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ABSTRACT 

The advent of models and advanced computational tools coupled with the exponential growth of 

computational resources over the past decades, have aided substantially in guiding the design of 

enhanced polymer materials of major technological importance in a broad range of industrially 

relevant applications.
1–4

 Atomistic simulations have assisted a great deal in the understanding of 

elusive microscopic phenomena manifesting themselves at polymer interfaces and of their 

mechanisms and in establishing structure-property relations;
5–8

 they have a drawback, however, 

namely that the computational cost they entail increases rapidly when considering processes 

involving high molar mass polymers of industrial relevance, with relaxation times far exceeding 

the accessible simulation times. Continuum simulation methods, on the other hand, have been 

really successful in modeling macroscopic phenomena; however, one has to make careful 

assumptions regarding the parameterization of a continuum model, especially when the 

examined phenomenon is sensitive to mechanisms exhibiting large time scale separations.
9–11

 

The accurate modeling of complex rheological phenomena exhibiting sensitivity to mechanisms 

manifesting themselves over a vast range of time- and length-scales has motivated the 

development of multiscale strategies comprising several levels of description, each level 

focusing on a specific window of time and length scales, receiving input from more detailed 

levels and providing input to coarser ones.  

The current thesis develops a multiscale simulation strategy
12–14

 for homogeneous and 

inhomogeneous polymer melts and polymer/solid interfaces over a broad range of molar masses, 

under quiescent and flow conditions. The multiscale simulation strategy comprises the following 

steps: 

a) The finer level of description entails atomistic simulations of unentangled and 

entangled polymer melts, allowing for the estimation of several thermodynamic, 

structural and dynamical properties on the segment and on the chain level. 

b) The atomistic trajectories are mapped onto mesoscopic, coarse-grained representations 

through a well-defined mapping procedure. The mesoscopic representations are then 
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analyzed and the extracted information is used as an input for the mesoscopic 

simulations of the multiscale approach. 

c) The parameters of the mesoscopic models are derived from the atomistic level of 

description through a bottom-up parameterization procedure. The mesoscopic models 

are developed “hand in hand” with atomistic simulations and the validity of the 

mesoscopic observables is assessed through comparisons with atomistic ones along the 

overlapping molar mass regimes and with experiment. 

The multiscale strategy has been applied to linear monodisperse polyethylene melts using the 

EMSIPON code
15

 and can be easily extended to describe other types of polymers and interfaces. 

The advantage of this multiscale strategy is that it allows for the prediction of several 

thermodynamic (i.e., interfacial free energies, local stress), structural (ie. short- and long-range 

size, shape and orientation of chain segments and entire chains) and dynamical (diffusion, 

viscosity) properties under quiescent and flow conditions, across a very broad molar mass 

regime. 
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Figure. Schematic illustration of the research objectives. 
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